

Formulas (IEC 60096-0-1 and general formulas in physics)

Attenuation, cable only	$\alpha(T) = (A \times \sqrt{f} + B \times f) \times (1 + \frac{J}{100} \times (T - 25^{\circ})) \times I (dB)$
Attenuation, including connectors	$\alpha(T) = (A \times \sqrt{f} + B \times f) \times (1 + \frac{J}{100} \times (T - 25^{\circ})) \times I + (C_1 + C_2) \sqrt{f} (dB)$
Wave length	$\lambda = \frac{c}{f \times \sqrt{\epsilon_r}} $ (m)
Signal delay	$t = \frac{1 \times \sqrt{\varepsilon_r}}{C} (s)$
Velocity of propagation	$v = \frac{1}{\sqrt{\epsilon_r}} \times 100 $ (%)
Velocity of propagation	$v = \frac{C}{\sqrt{\epsilon_r}} (m/s)$
Nominal phase	$\Phi_{25} = \frac{f \times \sqrt{\epsilon_r} \times 1 \times 360^{\circ}}{c} \text{ (DEG)}$
Reflection factor	$\Gamma = \frac{VSWR - 1}{VSWR + 1}, \Gamma = \frac{U_{reflected}}{U_{forward}}$
Retum loss	$RL=20LOG \frac{U_{reflected}}{U_{forward}} (dB)$, $RL=20LOG \left(\frac{1}{\Gamma}\right) (dB)$
Reflection loss	$RL=-10LOG(1-\Gamma^{2}) (dB)$
Voltage standing wave ratio	$VSWR = \frac{U \text{ forward} + U \text{ reflected}}{U \text{ forward} - U \text{ reflected}}$
Characteristic impedance	$Z_{o} = \frac{138 \times LOG\left(\frac{D}{d}\right)}{\sqrt{\epsilon_{r}}} (\Omega)$
Cut-off frequency	$f_{g} = \frac{2 \times c}{(D+d) \times \pi \times \sqrt{\epsilon_{r}}} $ (Hz)
Capacitance per unit length	$C = \frac{2 \times \pi \times \epsilon_{\mathbf{r}} \times \epsilon_{o}}{\ln\left(\frac{D}{d}\right)} (F/m)$

A,B = Characteristic cable coefficients

- $C_{1},C_{2} = Characteristic connector coefficients$ J = Temperature coefficient for attenuation (e.g. 0.002) $\varepsilon_{0} = 8.854 \times 10^{-12} (C/Vm)$
- = Relative dielectric constant 8**r**

- c = 300'000 km/s D,d = See diagram I = Length of cable/assembly
- Т Ambient temerature =
- f Frequency =
- Velocity = V

